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In his paper "Modal Stiffnesses of a Prestressed Cable Net", Mr. C. R. CaUadine has
presented an interesting method of studying the behaviour of pretensioned suspension
cable nets. The method is based on his work on the analysis of tensegric bodies[I]. Mr.
CaUadine is referring to tensegric structures and suspension cable net roofs as similar
structures. It should be stressed that the concept "tensegrity" was coined by FuUer[2] to
name the structures developed by Snelson; regular bodies in which the edges are cables
prctensioncd by bars that are connected at both of their ends to the body nodes and where
no bar touches another. Because the inner volume of the tensegric body is fuU of bars
functional use of the inner space is impossible. There were attempts to shift the bars from
occupying most of the inner space of the tensegric body to form the so-caUed tensegric
shell in which the free inner space can be of functional use.

First attempts were made by Fuller[3] and Pugh[4] which led to limited types of
tensegric shells. The general principle of composing the so-caUed tensegric nets[S] which
lead to an unlimited type of tensegric sheU has already been presented by the author. A
spherical tensegric sheU is shown in Fig. I.

FuUer defined "tensegrity" as a cable net supported by compression elements. Using
this definition also suspension cable net roofs are falling within the category of tensegric
sheUs as the saddle-shape cable net discussed by Mr. CaUadine. It is true that from analysis
point of view both structure are similar but from an engineering point of view, possible
geometrical configurations, transformation of forces, etc. they are totaUy different.
Therefore, there is a trend which should be encouraged to refer to one type of structure
as cable net roof and to the second one as tensegric sheU.

Mr. CaUadine is proposing to study the behaviour of tensegric shells and cable roofs
by considering the number of degrees of freedom and the number of independent states
of self stress. The number of independent states of self stress is crucial for the analysis.
Beside the statement that in the saddle-shaped cable net there is precisely one state of
self-stress and calling intuition to understand that in the so-called "loose" assembly the
number of independent plates of self stress is zero, there is not thorough discussion in the
matter.

Another method of studying the behaviour of tensegric sheUs and cable net roofs by
considering the equilibrium equations was proposed by the author[6,7]. Where an
assembly of m cables and bars is designed to fit into a certain geometrical configuration
the uniqueness of this configuration can be studied by using the equilibrium equations of
the m modes. These equations take the form of:

AP=Q (I)

in which A is the structure geometrical matrix related to the nodal co-ordinates, P is the
vector of the inner forces in the m members and Q is the vector of the n external forces
acting at the n nodes. It is assumed that the structure reactions can be found by using P
directly. The assembly of cables and bars has a unique geometrical configuration which
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Fig. I. A tensegric spherical shell.

indicates that the assembly is stable where the following two conditions are satisfied:
(I) It can be prestressed.
(2) Prestressing induces tension in the cables.
The possibility of prestressing is conditioned by the equilibrium of the inner forces

acting at the nodes, which implies:

API=O

in which PI is the vector of the prestressed forces in the structure members.
Equation (2) is satisfied where:

Ranh A <m.

(2)

(3)

In case I, where the number of internal inner forces m is larger than the number of
equilibrium equations n, the so-called indeterminate structure, this requirement is always
satisfied.

In case 2 where the number of unknown inner forces is equal to the number of
equilibrium equations, the so-called determinate structure equation condition[3J implies
that:

det A =O. (4)

In case 3 where the number of unknowns is smaller than the number of equations, the
so-called statically unstable structure this condition implies that a series of determinents
should be equal to zero.

It was shown how an assembly of bars and cables can be designed to fit into a desirable
stable geometrical shape. Where condition 3 is satisfied the members have specific lengths.
If one member is larger or shorter than required it, in most cases, implies that the ~mbly
cannot be fitted into a unique geometrical configuration and so the new assembly is not
stable-it is a mechanism. Mr. Calladine's reference to a "tight" or a "loose" assembly
where one member is shorter or larger, is rather misleading.

The forces induced in the structure members by prestressing can be found by using eqn
(2). The number of independent states of self-stress is equal to the number of members
in which the inner forces is to be assumed in order to predict the other members inner
forces. It can be seen that in case 1 this number is equal to m-n and in cases 2 and 3 it
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is at least 1. Only structures where tension is induced into the cables are feasible. Where
the structure is prestressed, the change in the members' length due to their elasticity effect
the assembly geometrical configuration. In every case the cables are prestressed to the
extent that under expected loads a certain amount of tension is left remaining in them.
Also, the case where an external load is applied to the structure was studied. It was found
that in the case of an indeterminate structure the cable-net roof or a tensegric shell can
sustain external loads in its prestressed geometry. The nodal displacements are due to the
members elasticity only, as in ordinary reticulated shells. In the case of determinate and
statically unstable structures the structure cannot sustain general external loads in its
prestressed geometry. There will be geometrical distortions, not only due to the members
elasticity, until equilibrium at the various nodes is achieved. This geometrical distortion
is finite and would not lead to a total collapse of the structure. Only under the so-called
fitted loads the nodal displacements are due to the members elasticity only. Because in the
case of geometrically unstable structures the displacements are finite it seems to be
inaccurate to refer to this type of tensegric shells or cable net roofs as mechanisms. Only
structures that cannot keep their geometrical configuration and extemalload may cause
to a total collapse of the structure, should be defined as mechanisms. For example, a
geometrically unstable assembly of cables and bars that cannot be fully prestressed. The
saddle-shape cable net roof discussed by Mr. Canadine is a geometrically unstable
structure and not a mechanism. It is important to realize that by designing this cable net
roof, with more cables, may be by adding diagonals, the net is an indeterminate structure
and the prestressed net is acting as an ordinary reticulated shell.
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